The Well Supported Semantics for Multidimensional Dynamic Logic Programs
نویسندگان
چکیده
Multidimensional dynamic logic programs are a paradigm which allows to express (partially) hierarchically ordered evolving knowledge bases through (partially) ordered multi sets of logic programs. They solve contradictions among rules in different programs by allowing rules in more important programs to reject rules in less important ones. This class of programs extends the class of dynamic logic program that provides meaning to sequences of logic programs. Recently the refined stable model semantics has fixed some counterintuitive behaviour of previously existing semantics for dynamic logic programs. However, it is not possible to directly extend the definitions and concepts of the refined semantics to the multidimensional case and hence more sophisticated principles and techniques are in order. In this paper we face the problem of defining a proper semantics for multidimensional dynamic logic programs by extending the idea of well supported model to this class of programs and by showing that this concept alone is enough for univocally characterizing a proper semantics. We then show how the newly defined semantics coincides with the refined one when applied to sequences of programs.
منابع مشابه
Well-Supported Semantics for Description Logic Programs
[Fages, 1994] introduces the notion of wellsupportedness as a key requirement for the semantics of normal logic programs and characterizes the standard answer set semantics in terms of the well-supportedness condition. With the property of well-supportedness, answer sets are guaranteed to be free of circular justifications. In this paper, we extend Fages’ work to description logic programs (or ...
متن کاملAnswer Sets for Logic Programs with Arbitrary Abstract Constraint Atoms
In this paper, we present two alternative approaches to defining answer sets for logic programs with arbitrary types of abstract constraint atoms (c-atoms). These approaches generalize the fixpoint-based and the level mapping based answer set semantics of normal logic programs to the case of logic programs with arbitrary types of c-atoms. The results are four different answer set definitions wh...
متن کاملWell-Supported Semantics for Logic Programs with Generalized Rules
Logic programming under the stable model semantics has been extended to arbitrary formulas. A question of interest is how to characterize the property of well-supportedness, in the sense of Fages, which has been considered a cornerstone in answer set programming. In this paper, we address this issue by considering general logic programs, which consist of disjunctive rules with arbitrary proposi...
متن کاملOn Updates of Logic Programs: Semantics and Properties on Updates of Logic Programs: Semantics and Properties
In this paper, we consider an approach to update nonmonotonic knowledge bases represented as extended logic programs under the answer set semantics. In this approach, new information is incorporated into the current knowledge base subject to a causal rejection principle, which enforces that, in case of conflicts between rules, more recent rules are preferred and older rules are overridden. Such...
متن کاملA Well-Founded Semantics for FOL-Programs
An FOL-program consists of a background theory in a decidable fragment of first-order logic and a collection of rules possibly containing first-order formulas. The formalism stems from recent approaches to tight integrations of ASP with description logics. In this paper, we define a well-founded semantics for FOL-programs based on a new notion of unfounded sets on consistent as well as inconsis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005